Course Code :GP 104

Course Title

:Mathematics II

Credits

: 3

Prerequisites

:NONE

Core/ Elective

:CORE

Aims: To encourage students to develop a working knowledge of the central ideas of linear algebra: vector spaces, linear transformations, orthogonality, eigenvalues, eigenvectors and canonical forms and the applications of these ideas in science and engineering

Learning Outcomes: On successful completion of the course, the students should be able to;

- Apply the knowledge of matrices, Gaussian reduction and determinants to solve systems of linear equations.
- Use the properties of vector spaces and to generalize the concepts of Euclidean geometry to arbitrary vector spaces.
- Identify linear transformations, represent them in terms of matrices, and interpret their geometric aspects.
- Calculate and identify the geometric aspects of eigenvalues and eigenvectors.
- Use eigenvalue properties of real symmetric matrices and apply them in quadraticforms and other applications.

No .	Topic	Time Allocation/ hours			
		L	T	P	A
1	Matrix Algebra: Operations; Elementary matrices; Inverse; Partitioned matrices	2			1
2	Determinants: Introduction and properties	2			1
3	Vector spaces: Definition; Subspaces; Linear independence and spanning; Basis; Change of basis; Normed spaces; Inner product spaces; Gram-Schmidt orthonormalization	8			6

4	Linear Transformations: Introduction; Matrix representation; Operations of LT; Change of Basis	4	2
5	System of linear equations: Gauss and Jordan elimination; LU factorization; Least square approximations; III-conditioned and over-determined systems	5	2
6	Characteristic value problem: Computing eigenvalues and eigenvectors; Eigen-basis; Diagonalization; Matrix exponentials; Real Symmetric matrices / definiteness	8	3
7	Real Symmetric matrices : Properties, definiteness, quadratic forms, applications	7	3
	Total	36	18

Note: L - Lectures, T - Tutorials, P - Practicals, A - Assignments

References:

- Advanced Engineering Mathematics E. Kreyszig
 Linear Algebra and its Applications- David C. Lay
 Elementary Linear Algebra and its Applications-James W. Daniel
 Matrices for Scientists and Engineers W.W. Bell

Assessment	Percentage Mark
In-course	
Tutorials/Quizzes	20
Mid Semester Examination	20
	30
End-Semester	
	50